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1 Introduction

The research to be summarized here was made possible by sustained funding from the Phys-
ical Oceanography Program of the U.S. Office of Naval Research (ONR), and through col-
laborations with scientists in the Operational Oceanography Group (GNOO; Grupo Nazionale
di Oceanografia Operativa) and access to computing resources of the National Climate Center
(CMCC: Centro euro-Mediterraneo per i Cambiamenti Climatici) of the Istituto Nazionale di
Geofisica e Vulcanologia (INGV) in Bologna. This unique combination of resources has pro-
vided a platform from which we are launching multidisciplinary research efforts that are leading
to broad-scale adoption of Bayesian Hierarchical Modeling (BHM) methods in oceanography
and related fields. At the time of the initial funding, BHM methods were relatively unproven
for applications in geophysical fluid settings with practical state- and data-space dimensions,
and operational time constraints. The applications of BHM to be reported here demonstrate the
practicality and advantages of the method for realistic problems in operational ocean forecasting.

Our research program goal has been to test the feasibility and practicality of BHM methods
in aspects of the Mediterranean Forecast System (MFS); an operational ocean data assimilation
and forecast system that produces 10-day forecasts for the state of the Mediterranean Sea every
day. Three separate BHM developments address different aspects of operational ocean forecast-
ing at INGV. In the MFS-Wind-BHM project, ensemble ocean forecast methods were developed
based on posterior distributions of the surface vector wind (SVW) process over the Mediter-
ranean Sea. In the MFS-Error-BHM project, time-dependent background error covariance in-
formation is provided to the sequential data assimilation system of MFS. Finally, multi-model
and multi-parameter super-ensembles for target ocean processes have been the objective of the
MFS-SuperEnsemble-BHM project.

Results for MFS-Wind-BHM are documented in companion papers (Milliff et al., 2011 and
Pinardi et al., 2011) that have appeared in the Quarterly Journal of the Royal Meteorological
Society (QJRMS). Research for MFS-Error-BHM and MFS-SuperEnsemble-BHM is ongoing as
described below, with manuscripts to be submitted in calendar year 2012.

2 MFS-Wind-BHM

The companion papers, Milliff et al., (2011) and Pinardi et al., (2011) provide a full-scale demon-
stration of the practicality and advantages of BHM methods in operational ensemble ocean fore-
casting. Principal achievements and findings of these works include:

• A BHM for the SVW (MFS-Wind-BHM) uses multi-platform data stage inputs (ECMWF
analyses and forecasts, and QuikSCAT SVW retrievals) to efficiently generate ensembles of
vector winds, four-times daily, at 0.5◦ resolution for the entire Mediterranean Sea forecast
domain. A snapshot of the SVW ensembles in the Western Mediterranean is shown in
Figure 1.

• The SVW wind ensembles provide realistic estimates of the SVW (i.e. in the posterior
mean sense) and SVW uncertainty (i.e. in the spread of the posterior distribution) given the
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Figure 1: Sample SVW realizations from the posterior distribution of MFS-Wind-BHM for the western
Mediterranean basin on 2 Feb 2005 at 1800 UTC. Ten wind vectors (black) are plotted at each grid location.
A red vector at each location represents the posterior mean wind vector (see also Milliff et al., 2011).

data and the validity of the process model based on geostrophic and ageostrophic balances
for the MFS domain taken as a whole, as functions of time.

• Realizations from the posterior distribution of MFS-Wind-BHM drive sequential data as-
similation steps to generate ensemble ocean initial conditions that exhibit realistic and
balanced spread in multivariate ocean fields including sea-surface temperature (SST), sea-
surface height (SSH), ocean currents, etc. The ensemble initial condition spread is focussed
on the scales of ocean mesoscale eddies. Initial condition spread in SST and SSH are de-
picted for 10-member ensembles in Figure 2.

• Realizations from the posterior distribution during the forecast period are based on data
stage inputs from ECMWF forecasts (vs. analyses during the assimilation period). How-
ever, the ensemble spread from ocean forecasts continues to be concentrated on ocean
mesoscales which, appropriately, are the most uncertain scales of the MFS forecasts.

• The MFS-Wind-BHM ocean ensemble forecast method is less arbitrary than random per-
turbation methods, and better at producing baroclinic perturbations (i.e. at the ocean pycn-
ocline) in the ocean response than more traditional methods (e.g. as practiced at ECMWF).
A comparison of spread in a density section (latitude vs. depth) during the forecast period
is shown in Figure 3.

The companion papers (Milliff et al., 2011 and Pinardi et al., 2011) provide a practical ex-
ample of uncertainty quantification via the BHM methodology for ocean-atmosphere systems of
realistic scale. The implications of this demonstration extend to the climate system as well (e.g.
see also Berliner and Kim, 2008).
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Figure 2: Standard deviations in ocean ensemble initial conditions for sea-surface height (top) and sea-
surface temperature (bottom) for a 10-member ensemble forced during the data assimilation period (14
days) by realizations of the MFS-Wind-BHM posterior distribution.
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Figure 3: Meridional section of σ = ρ−1000 (kgm−3) at 5◦E (Algerian coast to the left and French coast
to the right) for 17 Feb 2005. Panel (a) is the daily mean σ for forecast day 10. The σ standard deviation
for the ensemble forecast on day 10 as driven by realizations of the MFS-Wind-BHM posterior distribution
is shown in panel (b), and the σ standard deviation forced by the ECMWF ensemble prediction system
winds is shown in panel (c). The contour interval for σ standard deviations (b and c) is 0.01 (kgm−3).
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3 MFS-Error-BHM

The 3dVar MFS data assimilation system employs a multivariate background error covariance
matrix B, the vertical part of which (i.e. Bv) weights model estimates of temperature (T ) and
salinity (S) profiles (Dobricic et al., 2005; 2007). In order to account for changes in regional
water mass properties and seasonal variations that can be abrupt, MFS imposes ad hoc partitions
of the Mediterranean Sea domain into 13 sub-regions and 4 seasons. A table of 13×4Bv matrices
is maintained and changes in Bv are imposed as step-functions from region to region, and from
season to season.

The purpose of MFS-Error-BHM is to develop a method for temporal variation in Bv(t)

driven by data stage inputs from: a) forecast vs. data misfits, d; and b) forecast anomalies q,
that are the year-day departures from forecast climatology for MFS. The misfits d mostly reflect
forecast differences with respect to ARGO profiles at a few locations within each region during
the data assimilation period. The ARGO data are sparse in space and time such that the d data
are noisier than the climatology anomalies q. MFS-Error-BHM is flexibly designed to weight q

and d differently for each implementation of the model.
The vertical part of the forecast model error covariance is reduced in dimension by projecting

onto vertical basis functions with time dependent amplitude coefficients. Time-dependence is
modeled via an error process model for which the error covariance is given by Bv(t). Details are
provided in Wikle et al., (2012).

The time-dependent Bv(t) from MFS-Error-BHM is compared against the operational sys-
tem in (retrospective) reforecast experiments spanning several seasons. Metrics for comparison
include: time-histories of region-average RMS differences in sea-level anomaly (SLA) with re-
spect to analyzed satellite data; and time- and region-averaged vertical profiles of RMS misfits
in T and S. A growing matrix of developmental reforecast runs have been performed in the
Gulf of Lyon region of the MFS domain (i.e. region 3). In addition to testing developments in
MFS-Error-BHM, these experiments have served to refine the d and q datasets. Reforecasts with
Bv(t) based on vertical structure functions computed from region-average T (z) and S(z) pro-
files have not shown marked improvement over the operational system (i.e. with fixed seasonal
Bv) at MFS. In retrospect, we note that the target scale for the error covariance matrix in the
MFS 3dVar is the ocean mesoscale. In computing vertical structure functions that are the basis of
MFS-Error-BHM from region-average profiles, we have washed out important variability signals
that are focused at the ocean mesoscale (i.e. day to day eddy field variability).

We are in the process now of recomputing vertical structure functions based on the T (z)

and S(z) profiles at each grid location (i.e. 5140x, y) in region 3. Variability associated with
mesoscale eddies will be reflected in the vertical structures derived from this larger reanalysis
dataset. In addition, we are incorporating sea-surface height (SSH) analyses at each grid location
into the covariance matrix structure (i.e. adding another row and column to Bv). SSH provides
an vertically-integrated signal of the T (z) and S(z) variations in the upper ocean.

In arguing for the mesoscale enhancements of the vertical structure functions in MFS-Error-
BHM, Dr. Srdjan Dobricic (INGV lead) performed some sensitivity tests with fixed Bv in refore-
cast experiments with the MFS operational system. Figure 4 documents the impact of mesoscale
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variability in B in reforecast experiments for the period January-May 20051. Three panels plot
the root-mean-square (RMS) difference region-average sea-level anomaly (SLA) comparing fore-
casts with different vertical structure functions used in computing B (green traces) versus RMS
SLA difference for operational MFS (black traces). Panel (a) in Fig. 4 compares the RMS SLA
traces for a version of Bv wherein vertical structure functions are computed from T (z), S(z) and
SSH at every grid location (i.e. 5140 locations) within the region; thus preserving and emphasiz-
ing the ocean mesoscale variability. The RMS SLA is comparable to, but not yet better than the
operational RMS SLA. However, time dependence has not yet been tested here via MFS-Error-
BHM. Panel (b) in Fig. 4 depicts the RMS SLA comparison for a version of Bv for which SSH
is not considered in computing the vertical structure functions. The comparison with operational
RMS SLA is slightly degraded from the comparison in panel (a). Finally, the version of Bv(t)

tested in panel (c) is based on vertical structure functions computed from regional average T (z)

and S(z) as is the case in MFS-Error-BHM. This washes out important variability associated
with the ocean mesoscale and the test case (green) is worse than the operational case (black).

1It has recently been discovered that there is a mismatch in the year of the reforecast experiment shown here and
the year for which vertical basis functions were computed for Bv. These experiments are in the process of being
re-run now.
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4 MFS-SuperEnsemble-BHM

The Berliner and Kim (2008) BHM has been reformulated to address target ocean processes on
daily and sub-seasonal timescales as they are simulated in operational and experimental forecast
models at MFS; i.e. the Ocean PArallelise (OPA; Madec et al., 1998), and Nucleus for European
Modeling of the Ocean (NEMO; Madec, 2008) models, respectively. The reformulation is be-
ing implemented in a proof-of-concept calculation using daily temperature and salinity profiles
(i.e. T (z, t) and S(z, t)) for a location in the Rhodes Gyre region of the Eastern Mediterranean
Sea, during February and March 2006. These months span the period within which Levantine
Intermediate Water (LIW) typically forms in the Rhodes Gyre. Colder and saltier intrustions in
T (z, t) and S(z, t), between the surface and about 400m, are the signals of LIW formation and
spreading in the Rhodes Gyre region.

Simulations from OPA and NEMO provide data stage inputs for the multi-model ensem-
ble state estimation BHM. Ensembles are generated following the methodology in Milliff et al.,
2011. Ten realizations of a posterior distribution for the surface wind are used to generate 10
members each, of the 11 member ensembles for OPA and NEMO. The eleventh member for each
ensemble is forced by ECMWF winds that were used to spin up each model to the 1 February
2006 start date for the experiment. Simulation results are collected for the MFS grid location at
26.875◦E, 33.5◦N . Figure 5 depicts every other member of the OPA and NEMO ensembles, in
T (z, t) and S(z, t) that serve as data stage inputs to the BHM.

Details of the model implementation, including full-conditional distribution specifications,
will be provided in Berliner et al., 2012. A brief description of the BHM design is as follows. We
let the form of the data stage distribution be:

Yt,m,im |Bt,m,Xt,ΣYm ∼ Nd(Xt + Bt,m, ΣYm) (1)

where there are m = 1, . . . ,M models (e.g. M = 2 for OPA and NEMO), and im = 1, . . . , R

replicates for each model (i.e. R = 11 for 10 replicates driven be winds from realizations from
MFS-Wind-BHM, and the 11th replicate driven by ECMWF winds).

Let the target ocean process vector be X1, . . . ,XT , where each instance of Xt is d-dimensional,
say for d/2 depths, and the period T = 60d. So, in our proof-of-concept calculation, X will be
the distributions for T (z, t) and S(z, t), at the point of interest in the Rhodes Gyre. The process
model is given by a first-order multivariate autoregression (AR-1):

Xt − θt = H(Xt−1 − θt−1) + εt, t = 2, . . . , T (2)

where a prior mean vector θ1, . . . ,θT is removed at each time step, H is the autoregression
transition matrix, and the εt ∼ N(0,Σε) are the innovation vectors. Here, we use the Sys3a
version of the MFS ocean analyses for θt. Figure 6 depicts the Sys3a analysis T (z, t) and S(z, t)

at the point of interest in the Rhodes Gyre.
At the next level of the BHM hierarchy, the distribution for the Bt,m in (1) are specified.

Bt,m are used to account for inherent smoothing in time, and offsets in amplitudes, that are
characteristic of data stage inputs from each forecast model. These are the so-called model bias
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Figure 5: Every other ensemble member for a) T (z, t) (left column OPA and right column NEMO) and
b) S(z, t) (left OPA, right NEMO). These fields enter the data stage model of the multi-model ensemble
state estimate BHM.

9



Figure 6: Sys3a analysis a) temperature and b) salinity from the INGV operational system. The Sys3a
analysis T (z, t) and S(z, t) are used as prior means to demonstrate the multi-model ensemble state esti-
mation BHM methodology.

parameters that will be estimated for each model in the posterior distribution.
Berliner et al. (2012) theorize that either a complete set of relevant observations or a strong

prior are required to reduce uncertainty and identify model biases in the posterior distribution.
Here, we use an observation-based prior mean, θt in (2), to demonstrate the method. Table 1
depicts the layout of the random variables in the BHM (from Berliner et al., 2012).

Table 1: Layout of all Variables

State vector X X1,X2, . . . ,XT

Model class mean β β1,β2, . . . ,βT
Model 1 Ensemble Y111,Y211, . . . ,YT11

Y112,Y212, . . . ,YT12
...

Y11n1 ,Y21n1 , . . . ,YT1n1

Offset B11,B21, . . . ,BT1

Piece-wise constant b11, . . . ,bs11
Prior Mean Offset µ11, . . . ,µs11

...
...

...
...

Model M Ensemble Y1M1,Y2M1, . . . ,YTM1
...

Y1MnM
,Y2MnM

, . . . ,YTMnM

Offset B1M ,B2M , . . . ,BTM

Piece-wise constant b1M , . . . ,bsMM

Prior Mean Offset µ1M , . . . ,µsMM

The posterior distribution for T (z, t) and S(z, t) are summarized in Figure 7. Posterior mean
temperature and salinity profile evolutions are very similar to the Sys3a analyses. This is con-
sistent with the differences between the OPA and NEMO ensembles, and their differences with
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Figure 7: Posterior mean a) temperature and b) temperature uncertainty, c) salinity and d) salinity uncer-
tainty from the multi-model ensemble estimate BHM.

respect to the prior mean from Sys3a. The time- and depth-dependent uncertainties reflect times
and depths where the OPA and NEMO ensembles were most variable.

Figure 8 depicts summaries of the information from the BHM posterior distribution regard-
ing OPA and NEMO biases, and the uncertainties in those biases, for both T (z, t) and S(z, t). In
temperature, the NEMO model is too warm at depth, late in the February-March period. Con-
versely, the OPA model is too cold from the surface to about 200m in the early part of the period.
Moreover, the uncertainty in the OPA temperature bias is greatest during the early period as well.

The practical interest in the proof-of-concept developments for the multi-model ensemble
state estimation BHM have to do with probabilistic hindcasts of T and S signatures of LIW
formation in the Rhodes Gyre. This is an important ocean process that, once the ocean is pre-
conditioned, can occur in intermittent and sudden episodes, in response to extreme atmospheric
forcing events. The SVW realizations from MFS-Wind-BHM are used to force replicates for each
model in the multi-model superensemble during February and March (i.e. after pre-conditioning).
The multi-model ensemble state estimation BHM bounds the uncertainty in the critical forcing
events, and provides estimates of model biases in the simulation of important ocean processes.
Clearly, a very similar model framework can be used to bound uncertainty in different, user-
specified, ocean target processes (e.g. thermocline position and strength, transport across a pre-
defined line or position, etc.), for ensembles from a wide variety of forward models.
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Figure 8: Posterior mean bias fields, and bias field uncertainties for: (a-b) temperature in the NEMO
model; (c-d) temperature in the OPA model; (e-f) salinity in NEMO; and (g-h) salinity in OPA.

5 Med-ROMS Developments

The results described in the previous section demonstrate an ocean state estimation BHM given
multi-model simulations and data. A superensemble ocean forecast BHM is a direct extension
of that work. Toward that end, in the final two years of funding, the project supported the devel-
opment of a new ocean forecast system for the Mediterranean Sea based on the Regional Ocean
Modeling System (ROMS). Med-ROMS (www.med-roms.org) has an average horizontal resolu-
tion of 8.6 km with 30 terrain following layers. The western boundary of the model includes a
region of open ocean where a nudging open ocean boundary is used to introduce fluxes of mo-
mentum and buoyancy associated with the exchange with Atlantic waters. A recent report of the
ROMS model numerics and configurable options is given Haidvogel et al. (2008) or at the ROMS
official website (myroms.org).
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To build robust statistics for LIW and its model representation error we have generated an ex-
tensive data archive by driving Med-ROMS with different surface and boundary fluxes of momen-
tum and buoyancy. These are summarized in Table 2 and include different surface momentum
fluxes such as the reanalysis from ECMWF and National Center for Environmental Prediction
(NCEP), as well as the QuikSCAT satellite derived winds and the MFS Sys2b analysis. The MFS
analysis and the Simple Ocean Data Assimilation (SODA) products were also used to prescribe
the fluxes at the western open boundary of Med-ROMS.

As an example, Figure 9 shows and compares the horizontal spread of the 250m salinity in
the March mean for the different Med-ROMS simulations (see Table 2 for details on the boundary
conditions), and for the Med-ATLAS observations (www.ifremer.fr/medar) and MFS operational
analyses. As suggested earlier, 250m salinity is a good proxy for LIW and reveals some of
the biases in the exchange dynamics between the eastern and western Mediterranean basins.
Given the strong and prolonged changes in LIW over the period 2000-2006, we also performed
three longer term 40-year hindcasts of the Mediterranean circulation by forcing Med-ROMS
with ECMWF fluxes. These long-term integrations provide information on the natural range
of temporal variability of LIW and have also served to diagnose important forcing mechanisms
of decadal scale variations of the circulation. Specifically, we found that although most of the
interannual variability is controlled by the influence North Atlantic Oscillation, some of the long-
term large-scale changes in the Mediterranean circulation are remotely driven by decadal-El Niño
variations in the tropical Pacific. These latter results are beyond the initial scope of the project
but are a direct consequence of the Med-ROMS development. A detailed report of these findings
and of Med-ROMS performance is available in Di Lorenzo et al. (2012).
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Figure 9: LIW in Med-ROMS inferred from salinity at 250m from simulations that use different boundary
conditions (QSC, EWF). These are compared to the Med-ATLAS observations and the MFS operational
analyses.

Med-ROMS was also used to perform an ensemble of 11 simulations for the period of 2006.
These data archives along with the other Med-ROMS long-term integrations have been made
publicly available on the Georgia Tech OpenDAP server (data.eas.gatech.edu/med.php).

6 Extending BHM in Realistic Settings

Given the initial support from ONR, scientific applications of BHM in large state-space systems
have expanded to include projects supported by several agencies, covering a wide variety of
topics. These include:

• Ocean ecosystem parameter estimation: US Globec funding from NSF.

• Forecasting ocean ecosystem indicators with climate-driven process models: Workshop
funding from US Globec (DiLorenzo).

• Bayesian hierarchical climate prediction: funding from NSF (Wikle, Berliner).

• Characterizing uncertainty in the impact of global change on large river fisheries; Missouri
River sturgeon example: funding from USGS (Wikle).
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• A BHM for the Madden-Julian Oscillation: funding from NASA International Ocean Vec-
tor Winds Science Team (IOVWST).

• A global surface wind BHM: funding from NASA IOVWST.

• A regional ocean surface flux BHM (for the Mediterranean): funding from NASA IOVWST.

• Characterizing irreducible model error in ocean forecast systems: funding from ONR Ba-
sic Research Challenge.

The surface flux BHM noted above continues our collaboration with INGV, further extending
the work supported by ONR in the projects reported here.

7 References

Berliner, L.M., C.K. Wikle, R.F. Milliff and N. Pinardi, 2012: “Bayesian multi-model ensembling
for ocean state estimation”, in prep.

Berliner, L.M. and Y. Kim, 2008: “Bayesian design and analysis for superensemble-based climate
forecasting”, J. Climate, 21, 1891-1910.

DiLorenzo, E.A., N. Pinardi and R.F. Milliff, 2012: Decadal forcing of the Mediterranean surface
and subsurface circulation, in prep.

Dobricic, S., N. Pinardi, M. Adani, A. Bonazzi, C. Fratianni and M. Tonani, 2005: “Mediter-
ranean Forecasting System: A new assimilation scheme for sea-level anomaly and its valida-
tion”, Quart. J. Royal Met. Soc., 131, 3627-3642.

Dobricic, S., N. Pinardi, M. Adani, C. Fratianni, A. Bonazzi and V. Fernandez, 2007: “Daily
oceanographic analyses by the Mediterranean Forecasting System at basin scale”, Ocean Sci.,
3, 149-157.

Haidvogel, D.B., and 19 co-authors, 2008: Ocean forecasting in terrain-following coordinates:
Formulation and skill assessment of the Regional Ocean Modeling System, J. Comp. Physics,
227, 3595-3624.

Milliff, R.F., A. Bonazzi, C.K. Wikle, N. Pinardi and L.M. Berliner, 2011: “Ensemble ocean fore-
casting, Part I: Ensemble Mediterranean winds from a Bayesian hierarchical model”, Quart. J.
Royal Met. Soc., 137, 858-878.

Pinardi, N., A. Bonazzi, S. Dobricic, R.F. Milliff, C.K. Wikle and L.M. Berliner, 2011: “Ensem-
ble ocean forecasting, Part II: Mediterranean Forecasting System response”, Quart. J. Royal
Met. Soc., 137, 879-893.

Wikle, C.K., S. Dobricic, R.F. Milliff, N. Pinardi and L.M. Berliner, 2012: Hierarchical Bayesian
specification of time-varying covariances for data assimilation, in prep.

15



Project Publications

Berliner, L.M., C.K. Wikle, R.F. Milliff and N. Pinardi, 2012: “Bayesian multi-model ensembling
for ocean state estimation”, in prep.

Berliner, L.M. and Y. Kim, 2008: “Bayesian design and analysis for superensemble-based climate
forecasting”, J. Climate, 21, 1891-1910.

Berliner, L.M. and C.K. Wikle, 2007: Approximate importance sampling Monte Carlo for data
assimilation, Physica D, 230, 37-49.

Cressie, N. and C.K. Wikle, 2011: Statistics for Spatio-Temporal Data, John Wiley & Sons.

DiLorenzo, E.A., N. Pinardi and R.F. Milliff, 2012: Decadal forcing of the Mediterranean surface
and subsurface circulation, in prep.

Gladish, D.W., C.K. Wikle and S.L. Holan, 2012: Covariate-based parameterization of time-
varying spatial error covariances, in prep.

Holan, S. and C.K. Wikle, 2010: Comments on: “Bayesian Source Detection and Parameter
Estimation of a Plume Model Based on Sensor Network Measurements” by C. Huang et al.,
Applied Stochastic Models in Business and Industry, 26, 353-357.

Malmberg, A., A. Arellano, D.P. Edwards, N. Flyer, D. Nychka and C.K. Wikle, 2008: Interpo-
lating fields of carbon monoxide data using a hybrid statistical-physical model, The Annals of
Applied Statistics, 2, 1231-1248.

Milliff, R.F., A. Bonazzi, C.K. Wikle, N. Pinardi and L.M. Berliner, 2011: Ensemble ocean
forecasting, Part I: Ensemble Mediterranean winds from a Bayesian hierarchical model, Quart.
J. Royal Met. Soc., 137, 858-878.

Pinardi, N., A. Bonazzi, S. Dobricic, R.F. Milliff, C.K. Wikle and L.M. Berliner, 2011: Ensemble
ocean forecasting, Part II: Mediterranean Forecasting System response, Quart. J. Royal Met.
Soc., 137, 879-893.

Wikle, C.K., S. Dobricic, R.F. Milliff, N. Pinardi and L.M. Berliner, 2012: Hierarchical Bayesian
specification of time-varying covariances for data assimilation, in prep.

Wikle, C.K. and S.H. Holan, 2011: Polynomial nonlinear spatio-temporal integro-difference
equation models, Journal of Time Series Analysis, 32, 339-350; DOI: 10.1111/j.1467-
9892.2011.00729.x.

Wikle, C.K. 2010: Low rank representations for spatial processes, In: Handbook of Spatial Statis-
tics, A.Gelfand, P. Diggle, M. Fuentes, P. Guttorp (eds), Chapman and Hall. 107-118.

Wikle, C.K. and M.B. Hooten, 2010: A general science-based framework for spatio-temporal
dynamical models, Invited discussion paper for: Test, 19, 417-451.

16



Wikle, C.K. and R. F. Milliff, 2009: Invited discussion of “A spatio-temporal model for mean,
anomaly and trend fields of North Atlantic sea surface temperature” by R.T. Lemos and B.
Sanso, Journal of the American Statistical Association, 104, 22.

Wikle, C.K. and L. M. Berliner, 2007: A Bayesian tutorial for data assimilation, Physica D, 230,
1-16.

17



Project Presentations and Outreach
2005
Jul Confab in Boulder1

Oct Milliff 2 week visit to INGV; seminars at INGV, U. Bologna, Ravenna

2006
Jan Milliff seminar U. Hawaii
Mar Milliff seminar U. Washington, Dynamics Seminar series
May Milliff seminars at UC Berkeley, UCSC
May Milliff and Pinardi seminar at ONR HQ in DC
Jul Milliff (Intro to BHM) seminar at NASA, OVWST meeting, Salt Lake City
Jul Confab in Boulder

2007
Jan A. Bonazzi (U. Bologna) begins 12 month visit to NWRA/CoRA and UCSC
Apr Bonazzi and Milliff presentations, European Geophysical Union Meeting, Vienna
May Wikle invited seminar, SIAM Meetings, Snowbird
May Wikle invited seminar, Harvard Univ. Climate Lecture series, Cambridge
Aug Confab in Boulder
Aug Milliff presentation, AMS Meeting, Portland, OR
Sep Milliff seminar, Atmos. Sci. Dept., U. Washington
Nov Milliff seminar, NRL Stennis (host: Gregg Jacobs)

2008
Mar Bonazzi thesis filed at U. Bologna
Mar Milliff public outreach/invited talk, Boulder Torch Club
May Milliff presentation, ONR Review, Scripps Inst Oceanog, La Jolla, CA
Aug Wikle and Berliner invited talk, Joint Statistical Meetings, Denver
Aug Confab in Boulder
Oct Wikle public outreach/invited talk, Truman State Univ., Kirksville, MO
Nov Milliff presentation (MFS-Wind-BHM), OVWST meeting, Seattle, WA
Dec Wikle and Milliff invited presentations, NRC Workshop on

Uncertainty Management in Remote Sensing of Climate Data, Wash. D.C.

2009
Feb DiLorenzo visit to NWRA/CoRA to setup MedROMS
Feb Wikle public outreach/invited talk, Hickman High School, Columbia, MO
Apr Milliff visits INGV, seminar
Apr Wikle, invited seminar, Dept. Statistics, Univ. Wyoming
Jun Milliff presentation, ONR Review in Chicago, IL
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Aug Wikle, invited seminar, Joint Statistics Meetings, Wash. D.C.
Aug Wikle, JASA invited discussioin, Joint Statistics Meetings, Wash. D.C.
Aug Confab in Boulder
Sep Wikle, invited seminar, SAMSI Pgm on Space-Time Analysis (opening workshop)
Oct Wikle, invited seminar, Iowa State Univ.

2010
Feb Fiadeiro, Milliff, Wikle, session organizers; Berliner, Pinardi presenters

Probabilistic Models in Ocean Science session, Ocean Sciences Meeting, Portland, OR
May Wikle presentation, Inst. for Pure and Applied Math., Univ. California, Los Angeles
Aug Confab in Boulder
Sep Wikle, invited seminar, Dept. Statistics, Kansas State Univ.

2011
Apr Wikle, invited seminar Dept. Biostatistics, Univ. Iowa
Aug Confab in Boulder
Sep Wikle, invited seminar, Norwegian Computing Center, Univ. Oslo
Sep Ocean DA Workshop, UMd (Gregg Jacobs, Organizer), Milliff session chair
Oct Wikle, invited seminar, Courant Inst. Applied Math., New York Univ.
Oct Wikle, invited seminar, Dept. Applied Math., Univ. California, Santa Cruz
Nov Wikle, invited seminar, Dept. Statistics, Univ. Illinois, Urbana-Champaign
Nov Milliff presentation, ONR Review, Denver, CO

1 Annual Confabs include all PI’s, ONR representatives and invited guests. The discussions are
lively and broad-ranging. Presentations of research issues and unsolved problems are encouraged
over finished talks. Confab guests of relevance to the ONR BHM to Augment the MFS funding
include INGV scientists (Pinardi, Dobricic, Oddo, Bonazzi), NRL scientists (Jacobs, Coelho,
Richman), ONR-funded scientists (Moore, Powell). The Confabs have been expanded to include
researchers from the projects spawned by initial BHM work described in this report (see section
6).
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